Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine.

نویسندگان

  • Meredith A Morgan
  • Leslie A Parsels
  • Joshua D Parsels
  • Alefiyah K Mesiwala
  • Jonathan Maybaum
  • Theodore S Lawrence
چکیده

The deoxycytidine analogue 2',2'-difluoro-2'-deoxycytidine (gemcitabine) is a potent radiation sensitizer in a variety of solid tumors and tumor cell lines. Previous studies have shown that radiosensitization by gemcitabine is accompanied by simultaneous depletion of dATP pools (through ribonucleotide reductase inhibition) and accumulation in the S-phase of the cell cycle. Because of the importance of cell cycle redistribution in gemcitabine-mediated radiosensitization, we investigated the role of checkpoint kinase (Chk) 1 and Chk2 in gemcitabine-induced cell cycle arrest. We hypothesized that gemcitabine might induce Chk1 or Chk2 signal transduction pathways that mediate S-phase arrest. We found that radiosensitizing concentrations of gemcitabine induced accumulation of phosphorylated Chk1 and Chk2 and down-regulation of Cdc25A in BxPC-3 (10 nmol/L), Panc-1 (100 nmol/L), A549 (30 nmol/L), RKO (30 nmol/L), and SW620 (30 nmol/L) cells. Depletion of Chk1 from Panc-1 cells prevented the down-regulation of Cdc25A in response to gemcitabine. Furthermore, Chk1 depletion permitted Panc-1 and SW620 cells treated with gemcitabine to enter mitosis despite incomplete DNA synthesis. However, depletion of neither Chk1 nor Chk2 abrogated the inhibition of DNA synthesis in response to gemcitabine. These results provide evidence that Chk1 negatively regulates entry into mitosis in response to gemcitabine. Furthermore, these data imply that Chk1 acts to coordinate the cell cycle with DNA synthesis, thus preventing premature mitotic entry in gemcitabine-treated cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death

Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4-8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells w...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Cdc18p can block mitosis by two independent mechanisms.

The DNA replication checkpoint is required to maintain the integrity of the genome, inhibiting mitosis until S phase has been successfully completed. The checkpoint preventing premature mitosis in Schizosaccharomyces pombe relies on phosphorylation of the tyrosine-15 residue on cdc2p to prevent its activation and hence mitosis. The cdc18 gene is essential for both generating the DNA replication...

متن کامل

Combination drug scheduling defines a "window of opportunity" for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900.

Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect...

متن کامل

Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint

The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 15  شماره 

صفحات  -

تاریخ انتشار 2005